Forecasting Events Using an Augmented Hidden Conditional Random Field

نویسندگان

  • Xinyu Wei
  • Patrick Lucey
  • Stephen Vidas
  • Stuart Morgan
  • Sridha Sridharan
چکیده

In highly dynamic and adversarial domains such as sports, short-term predictions are made by incorporating both local immediate as well global situational information. For forecasting complex events, higher-order models such as Hidden Conditional Random Field (HCRF) have been used to good effect as capture the long-term, high-level semantics of the signal. However, as the prediction is based solely on the hidden layer, fine-grained local information is not incorporated which reduces its predictive capability. In this paper, we propose an “augmentedHidden Conditional Random Field” (a-HCRF) which incorporates the local observation within the HCRF which boosts it forecasting performance. Given an enormous amount of tracking data from vision-based systems, we show that our approach outperforms current state-of-theart methods in forecasting short-term events in both soccer and tennis. Additionally, as the tracking data is long-term and continuous, we show our model can be adapted to recent data which improves performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented conditional random fields modeling based on discriminatively trained features

Augmented Conditional Random Fields (ACRFs) are undirected graphical models that maintain the Markov properties of Hidden Markov Models (HMMs), formulated using the maximum entropy (MaxEnt) principle. ACRFs incorporate acoustic context information into an augmented space in order to model the sequential phenomena of the speech signal. The augmented space is constructed using Gaussian activation...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Combining phonetic attributes using conditional random fields

A Conditional Random Field is a mathematical model for sequences that is similar in many ways to a Hidden Markov Model, but is discriminative rather than generative in nature. Here we explore the application of the CRF model to ASR processing by building a system that performs first-pass phonetic recogintion using discriminatively trained phonetic attributes. This system achieves an accuracy le...

متن کامل

Travel Speed Forecasting by Means of Continuous Conditional Random Fields

interpret and analyze the resulting model. Autoregressive integrated moving average (ARIMA) models, which encompass RW, random-trend models; auto-regressive models; and exponential weighted moving averages are linear time series models that have been quite popular thanks to their ability to exploit temporal dependence in prediction errors (4, 5). Linear models that exploit both spatial and temp...

متن کامل

Heterogeneous Web Data Extraction Algorithm Based On Modified Hidden Conditional Random Fields

As it is of great importance to extract useful information from heterogeneous Web data, in this paper, we propose a novel heterogeneous Web data extraction algorithm using a modified hidden conditional random fields model. Considering the traditional linear chain based conditional random fields can not effectively solve the problem of complex and heterogeneous Web data extraction, we modify the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014